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Abstract

The biogenesis of mitochondria depends on the coordinated expression of nuclear and mitochondrial genomes. Consequently, the
control of mitochondrial biogenesis and function depends on extremely complex processes requiring a variety of well orchestrated reg-
ulatory mechanisms. It is clear that the interplay of transcription factors and coactivators contributes to the expression of both nuclear
and mitochondrial respiratory genes. In addition, the regulation of mitochondria biogenesis depends on proteins that, interacting with
messenger RNAs for mitochondrial proteins, influence their metabolism and expression. Moreover, a tight regulation of the import and
final assembly of mitochondrial protein is essential to endow mitochondria with functional complexes. These studies represent the basis
for understanding the mechanisms involved in the nucleus–mitochondrion communication, a cross-talk essential for the cell.
� 2007 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

Keywords: Mitochondria; Transcriptional factors; Post-transcriptional regulation; RNA-binding proteins
1. Introduction

Eukaryotic cells contain a large number of mitochon-
dria, which are essential for cell metabolism. In fact, these
organelles perform pyruvate dehydrogenation, Kreb’s
cycle, and oxidative phosphorylation, the energy-generat-
ing processes coupling the oxidation of substrates to the
synthesis of nearly all cellular ATP. In addition, mitochon-
dria are involved in the synthesis of amino acids, nucleo-
tides, and lipids, in ion homeostasis and in cell
proliferation, motility and programmed death (Schatz,
1995; Ackerman and Tzagoloff, 2005; Caruso et al.,
2007). Mitochondria malfunctioning is related to aging
and to the onset of many diseases, including cancer
(McKenzie et al., 2004; Brandon et al., 2006; Modica-
Napolitano et al., 2007). The number, structure, and func-
tions of mitochondria differ in animal cells and tissues in
relation to the energetic needs (Yaffe, 1999; Nagata,
2006), and they can vary during development and differen-
tiation, or in response to physiological or environmental
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alterations (Pollak and Sutton, 1980; Cuezva et al., 1997;
Enriquez et al., 1999; Moraes, 2001). Mitochondrial prolif-
eration occurs in response to electrical stimulation of mus-
cle, following training exercise (Hood, 2001) and during
thermogenesis adaptation in rodent brown fat (Klingens-
por et al., 1996). Proliferation of defective mitochondria
takes place in certain mitochondrial myopathies, in which
affected muscles are characterized by the presence of rag-
ged red fibres (Moraes et al., 1992). Presumably, this pro-
liferation is a nuclear response to mitochondrial DNA
(mtDNA) mutations leading to deficiencies in ATP produc-
tion, but the mechanisms underlying these events are
poorly understood at the molecular level. Mitochondrial
proliferation and massive amplification of mtDNA take
place during oogenesis in sea urchin. The resulting mito-
chondrial genomes are distributed to the embryo cells until
very late developmental stages, when embryonic mtDNA
replication resumes (Matsumoto et al., 1974; Rinaldi
et al., 1979a,b). Interestingly, mitochondrial mass in Para-

centrotus lividus embryos is constant during development,
while respiratory activity is enhanced at fertilization and
increases from 16 blastomeres until gastrula (Morici
et al., 2007). Experiments on enucleated sea urchin eggs
rch Society. All rights reserved.
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demonstrated that a negative control is exerted by the
nucleus over mitochondrial mtDNA activity: mitochon-
drial DNA does not replicate, and it is not transcribed,
as long as the nucleus is present (Rinaldi and Salcher-Cil-
lari, 1989). Mitochondrial genome consists of a double-
stranded covalently closed circular DNA molecule of about
16.5 kb in vertebrates. Many mtDNA molecules are pack-
aged within mitochondria into small clusters called nucle-
oids (Jacobs et al., 2000), or chondriolites, that vary in
size and number in response to physiological conditions
(Nosek and Tomaska, 2003; Legros et al., 2004; Malka
et al., 2006). Nucleoid structure is stabilized by TFAM,
or mtTFA, which binds to mtDNA and regulates its abun-
dance (Kanki et al., 2004). The maintenance of the integrity
of mitochondrial DNA is important for keeping proper cel-
lular functions both under physiological and pathological
conditions (Kang et al., 2007). Mitochondria contains
about 1500 different proteins, only half of which have been
identified (Calvo et al., 2006). Metazoan mtDNA encodes
13 mRNAs for subunits of the oxidative phosphorylation
complexes (OXPHOS) (Anderson et al., 1981; Taanman,
1999; Fernandez-Silva et al., 2003). Proteins of mitochon-
drial origin are translated on mitochondrial ribosomes
bound to the matrix side of the inner membrane, and co-
translationally inserted into the proper compartment (Poy-
ton and McEwen, 1996; Allen et al., 2005). All the other
mRNAs for mitochondrial proteins are transcribed in the
nucleus (Saraste, 1999) and translated by cytoplasmic ribo-
somes. Proteins are eventually imported into mitochondria
(Glick and Schatz, 1991) and distributed to different com-
partments (inner and outer membrane, matrix and inter-
membrane space) (Poyton and McEwen, 1996). These
two pathways must converge at some point for those mul-
timeric complexes assembling nuclear and mitochondrial
gene products. It is noteworthy that the machineries for
both pathways are composed entirely by nuclear-coded
proteins. Recently, by genomic and proteomic approaches,
experiments were devoted to identify new pathways for the
biogenesis of the inner and outer membranes, for the
assembly and export of proteins from matrix to the inner
membrane and for the addition of new components to
the existing pathways (Meisinger et al., 2007).

One group of nuclear genes contributes with catalytic
and auxiliary proteins to the mitochondrial enzymatic
activity. A second group includes all the factors that regu-
late the expression of nuclear and mitochondrial OXPHOS
genes (Scarpulla, 2006), while a third group encodes factors
responsible for the import, assembly, and final localization
of mitochondrial polypeptides (Neupert, 1997; Koehler,
2004). Thus, nuclear genome has a leading role in the bio-
synthesis of the respiratory chain (Khalimonchuk and
Rödel, 2005; Scarpulla, 2006), nevertheless, although rela-
tively few, mitochondrion-encoded proteins participate in
the formation of mitochondrial oxidative phosphorylation
complexes (Attardi and Schatz, 1988; Capaldi, 1990).
Moreover, nuclear activity can be modulated by signals
sent by mitochondria (Liu and Butow, 2006).
2. Transcriptional regulation

The identification of transcription factors regulating the
expression of nuclear genes encoding mitochondrial respi-
ratory components represents a good experimental tool
for elucidating the mechanisms involved in the intergenom-
ic cross-talk (Garesse and Vallejo, 2001). In general, it is
thought that several regulatory circuits might exist in
response to different physiological stimuli, or that different
regulatory pathways are activated for the expression of dif-
ferent groups of genes. In other words, several factors reg-
ulating the transcription of many nuclear genes for
mitochondrial proteins were isolated, but so far no com-
mon feature has been identified for the regulation of all
involved genes in a coordinated manner (Goffart and Wies-
ner, 2003; Scarpulla, 2006). The promoters of many genes
coding for OXPHOS proteins and other mitochondrial
enzymes were characterized. It was demonstrated that they
do not exhibit canonical TATA and CAAT boxes, have
heterogeneous initiation sites, and contain complex and
promoter-specific regulatory regions that can differ even
among genes encoding subunits of the same complex (Gar-
esse and Vallejo, 2001). The expression of many proteins of
the OXPHOS complexes, like cytochrome c oxidase, the
terminal component of mitochondrial respiratory chain,
is regulated at transcriptional level through specific
nucleus-encoded factors (Lenka et al., 1998; Scarpulla,
2002a,b). NRF1 (nuclear respiratory factor 1), the first iso-
lated mammalian factor common to the expression of
nuclear respiratory genes, functions as a positive regulator
of transcription (Scarpulla, 2002b; Kelly and Scarpulla,
2004). The target genes of NRFs (NRF-1 and NRF-2)
encode subunits of the OXPHOS complexes or proteins
involved in the expression, assembly, and function of the
complexes (Scarpulla, 2006). In mammals, it has been dem-
onstrated that NRF-1 is able to bind the promoters of
genes encoding components of mtDNA transcription
machinery (TFAM, TFB1M, TFB2M, and POLRMT)
(Cam et al., 2004), whose mechanisms of action are being
established (Asin-Cayuela and Gustafsson, 2007). More-
over, NRF-1 seems to be related to the expression of mito-
chondrial and cytosolic enzymes of the heme biosynthetic
pathway, and to components of the protein import and
assembly machinery, suggesting that it plays a role in
nuclear–mitochondrial interactions (Scarpulla, 2006).
NRF-2 regulates the transcription of mtTFA in human,
mouse, and rat (Kelly and Scarpulla, 2004), and mtTFA
is responsible for the transcription of the mitochondrial-
encoded COX subunits I, II, and III, that are transcribed
polycistronically (Fisher and Clayton, 1988; Larsson
et al., 1998). Ongwijitwat and Wong-Riley demonstrated
that, in neurons, NRF-2 is able to regulate all the
nuclear-encoded COX subunits at the transcriptional level.
Thus, NRF-2 may play a critical role in regulating the syn-
thesis of the cytochrome c oxidase subunits in response to
changes in neuronal energy demand (Ongwijitwat and
Wong-Riley, 2005). Human cytochrome c1 promoter seems
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to be modulated by two transcription factors, E2F1 and
E2F6, but they do not exert the same effects on other addi-
tional promoters of OXPHOS genes, suggesting that the
members of the E2F family are not general modulators
of OXPHOS gene expression (Luciakova et al., 2000).
The activity of transcription factors is increased by coreg-
ulators, which usually exist as multiprotein complexes in
the nucleus. This class of proteins can be highly regulated
and represents the primary targets of hormonal control
and signal transduction pathways (Spiegelman and Hein-
rich, 2004). The PGC-1 (peroxisome proliferator-activated
receptor (PPAR) coactivator 1) family plays a critical role
in the control of tissue-specific biological processes and in
the regulation of mitochondrial oxidative metabolism
(Lin et al., 2005). The PGC-1 coactivators are highly versa-
tile, interacting with different transcription factors that
directly regulate the expression of certain nuclear genes
for mitochondrial products (Puigserver and Spiegelman,
2003; Kelly and Scarpulla, 2004); these include NRF-1
and NRF-2, whose genes are themselves targets of PGC-
1a (Wu et al., 1999). PGC-1a and b stimulate the biogene-
sis of mitochondria with different metabolic characteristics,
thus, by modulating the relative activity of these two coac-
tivators, cells may achieve fine-tuning of mitochondrial
function in response to specific metabolic needs (Lin
et al., 2005; Feige and Auwerx, 2007).

Taken together, these data suggest that transcriptional
factors and nuclear coactivators orchestrate the programs
of expression of both genomes, essential to cellular energet-
ics, therefore they can be considered main players of the
communication between nucleus and mitochondria.

3. Post-transcriptional regulation

Increasing evidences demonstrate the importance of
mRNA localization, stability, and translation regulation
in the control of gene expression, in both developmental
and differentiated cells; such regulation mostly relies upon
the activity of RNA-binding proteins (Derrigo et al., 2000;
Raimondi et al., 2002; Keene and Lager, 2005). The cellu-
lar activity of RNA-binding proteins is regulated by their
abundance, by the availability of specific regulatory mole-
cules and/or by post-translational modification of their
binding activity (Sachs et al., 1997; Mendez et al., 2000;
Dreyfuss et al., 2002). Mili and colleagues described human
LRP130 protein, component of the PPR (pentatricopeptide
repeat motif) group of RNA-binding proteins, which is
localized both in the nucleus, where it is associated with
post-splicing mRNP complexes, and in mitochondria,
where it binds polyadenylated mRNAs. This suggests that
LRP130 could participate in coordinating the expression of
nuclear and mitochondrial genomes (Mili and Pinol-Roma,
2003). It was also found that mouse AKAP121 (kinase A
anchoring protein) expressed in HeLa cells carries MnSOD
mRNA in proximity of mitochondrial outer membrane,
promoting its translation, thus facilitating the import into
mitochondria (Ginsberg et al., 2003). Interestingly, in sea
urchin embryos, we found evidence that at least one com-
plex of 40 kDa can be formed by a region of the 3 0-UTR
of the hsp56 messenger RNA and a binding protein which
is more abundant in the outer mitochondrial membrane
(Di Liegro and Rinaldi, 2007). In addition, it was recently
reported that Puf3p, a Pumilio family RNA-binding pro-
tein, localizes to mitochondria and regulates mitochondrial
biogenesis in yeast (Garcia-Rodriguez et al., 2007). On the
other hand, they were described factors involved in post-
transcriptional regulation of mitochondrial RNAs, such
as the RBP38 protein, probably implicated in RNA stabil-
ization (Sbicego et al., 2003). In Saccharomyces cerevisiae,
it was demonstrated that the translation and assembly of
the subunits II and III of COX complex depends upon
nucleus-encoded translation activators, which specifically
recognize the 5 0-untranslated leader of the mRNAs (Cost-
anzo et al., 1986; Sanchirico et al., 1998). We demonstrated
that, in developing rat brain, the amounts of COXIII pro-
tein and mRNA are not linearly related, suggesting that
COXIII expression could also be regulated at post-tran-
scriptional levels (Cannino et al., 2004). Recently, we
described two different factors able to bind COXIII
mRNA, present in the mitochondrial extracts of adult rat
brain and testis, respectively. These tissue-specific factors
could participate in COXIII mRNA translation and/or
localization in mitochondrial inner membrane (Cannino
et al., 2006). Mitochondrial extracts from rat brain also
contain a factor able to bind COXIV mRNA 3 0-UTR,
whose binding ability decreases during brain differentia-
tion. The same mRNA is bound by proteins present in
post-mitochondrial extracts from heart, kidney, and testis.
These results suggest the existence of different tissue-spe-
cific post-transcriptional regulatory factors, or the occur-
rence of post-translational modifications of the same
factor (Cannino et al., 2006).

During liver development (Luis et al., 1993; Izquierdo
et al., 1995; Izquierdo and Cuezva, 1997), in brown adipose
tissue (Tvrdik et al., 1992) and in kidney cells (Di Liegro
et al., 2000), the regulation of the expression of the b-sub-
unit of the mitochondrial H+-ATP synthase is also exerted
at the level of mRNA translation. The translation of b-
mRNA mostly depends on the 3 0UTR of the mRNA that,
interacting with the translational machinery (Izquierdo and
Cuezva, 1997) and resembling internal ribosome entry sites
(Di Liegro et al., 2000; Izquierdo and Cuezva, 2000),
behaves as a positive regulator. In fetal liver and in hepato-
mas, Cuezva and colleagues found proteins that, binding to
the 3 0UTR of the mRNA (3 0 FBPs), interfere with the
translation-enhancing activity of the 3 0UTR of the mRNA
(Izquierdo and Cuezva, 1997; de Heredia et al., 2000),
hence regulating mitochondrial biogenesis in hepatocytes
(Valcarce et al., 1988; Izquierdo et al., 1995; Cuezva
et al., 1997; de Heredia et al., 2000).

Since many data exist concerning the activity of RNA-
binding proteins in both multicellular and unicellular
systems, it is possible to hypothesize that, despite the bio-
logical differences between models, the regulation involving
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protein–mRNA interactions might represent a general
mechanism of the regulation of nuclear–mitochondrial
interaction.

Reversible protein acetylation is emerging as a critical
post-translational modification involved in the regulation
of many biological processes. Although most of the pio-
neering experiments focused on the role of histone acetyla-
tion in transcriptional control, recent findings have
generalized the concept to many non-histone proteins
(Sterner and Berger, 2000). Interestingly, it was demon-
strated that mammalian mitochondria contain intrinsic
NAD-dependent deacetylase activity. This deacetylase is
the nuclear-encoded SirT3, homologous to yeast Sir2 (Tan-
ner et al., 2000), and it is located within mitochondrial
matrix. SirT3 activity could lead to the constitutive deacet-
ylation of one or several mitochondrial proteins (Schwer
et al., 2002). SirT3 activates mitochondrial functions and
plays an important role in adaptive thermogenesis, stimu-
lating CREB phosphorylation, which directly activates
PGC-1a promoter (Shi et al., 2005). Recently, it was found
that, under normal cell growth conditions, SirT3 localizes
not only to mitochondria, but also to the nucleus, and it
is transported from the nucleus to mitochondria upon cell
stress (Scher et al., 2007). SirT1, another mammalian
homolog of yeast Sir2, was shown to modulate PGC-1a,
leading to enhanced transcriptional activity in an NAD+-
dependent way (Rodgers et al., 2005) and, in addition,
inducing a metabolic gene transcription program of
mitochondrial fatty acid oxidation (Gerhart-Hines et al.,
2007).

Mitochondrial activity is regulated also by modulating
the import and assembly of proteins and, during the last
years, several novel components of these pathways have
been identified. TIM23 complex and the presequence trans-
locase-associated motor, the PAM complex, mediate the
multistep import of pre-proteins with cleavable N-terminal
signal sequences into the matrix or inner membrane of
mitochondria (van der Laan et al., 2006), while the inner
membrane contains several components that mediate the
sorting and assembly of these proteins. Together, the trans-
location and assembly complexes coordinate mitochondria
biogenesis (Koehler, 2004). Moreover, increasing evidences
indicate that chaperones participate not only in protein
folding, but also in assembling and maintaining mitochon-
drial complexes (Szabadkai and Rizzuto, 2007). A recently
discovered sorting and assembly machinery (SAM com-
plex) is essential for integration and assembly of outer-
membrane proteins (Pfanner et al., 2004). For example,
the pathway of VDAC (voltage-dependent anion-selective
channel) biogenesis in human mitochondria involves the
TOM complex, Sam50, and metaxins. The deletion of
Sam50, the central component of SAM, led to a defect in
the assembly of VDAC (Kozjak-Pavlovic et al., 2007).
Cytochrome c oxidase (COX) biogenesis includes a variety
of steps from translation to the formation of the mature
complex. Each step involves a set of specific factors that
assist translation of subunits, their translocation across
membranes, insertion of essential cofactors, assembly and
final maturation of the enzyme (Khalimonchuk and Rödel,
2005). A novel gene product of the dihydrolipoamide suc-
cinyltransferase gene, MIRTD (mitochondrial respiration
generator of truncated DLST), mediates the molecular
assembly of the cytochrome c oxidase complex (COX), so
that MIRTD mRNA decrease could affect energy produc-
tion. The level of MIRTD mRNA is significantly low in the
brains of AD (Alzheimer’s disease) patients, also confirm-
ing the idea that COX defect can cause the disease (Ohta
and Ohsawa, 2006).

In conclusion, different post-transcriptional and post-
translational mechanisms operate in the regulation of mito-
chondrial biogenesis and activity. Future investigation
efforts should be devoted to the understanding of the rela-
tionships between the components of these regulation
systems.

4. Mitochondria to nucleus communication

Nuclear gene expression can be influenced by signals
coming from mitochondria, a process called retrograde
communication (Parikh et al., 1987; Liao and Butow,
1993; Poyton and McEwen, 1996; Liu and Butow,
2006), so that the regulation of mitochondrial activity
depends on a bidirectional flow of information. In yeast,
the retrograde signaling pathway functions as a homeo-
static or stress response mechanism, to adapt various
biosynthetic activities to the alterations of metabolic
mitochondrial conditions (Liao et al., 1991; Small
et al., 1995; Liu and Butow, 2006). Sekito and collabora-
tors suggested a model for the control of signaling from
mitochondria to nucleus, in which the cells with dysfunc-
tional mitochondria send one or more signals to nucleus
via Rtg2p: the dephosphorylation of a highly phosphor-
ylated form of Rtg3p leads to its transient dissociation
from Rtg1p and to the translocation of Rtg1p and Rtg3p
to the nucleus. Here they bind the GTCAC box sites of
target genes and consequently activate transcription (Sek-
ito et al., 2000). In skeletal mammalian myoblasts and in
human pulmonary carcinoma cells, mitochondrial retro-
grade signaling seems to occur through cytosolic [Ca2+]i
changes (Biswas et al., 1999; Amuthan et al., 2002).
The alteration of mitochondrial membrane potential
(DW) reduces mitochondrial Ca2+ uptake and, in turn,
it reduces ATP availability, causing reduction of calcium
efflux into storage organelles or outside the cells.
Increased cytosolic Ca2+ concentration in turn activates
calcineurin, and related factors such as Ca2+-dependent
kinases, causing the activation of different nuclear tran-
scription factors (Butow and Avadhani, 2004). Interest-
ingly, the absence of mitochondrial function blocks
myotube differentiation, probably through the specific
down-regulation of myogenin mRNA transcription
(Rochard et al., 2000). The retrograde signaling could
be realized by the translocation of some mitochondrial
proteins to the cytoplasm, and/or into the nucleus.
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According to such hypothesis, we recently found that, in
developing rat brain, cytochrome c oxidase subunit III is
localized not only in mitochondria, but is also present in
the cytosol (Cannino et al., 2004), where it could exert a
regulatory role.

Even if these data were obtained in different systems and
the molecular mechanisms so far described are different,
one can look at retrograde communication as a common
necessary mechanism modulating nuclear–mitochondrial
interaction.

5. Mitochondria and cancer

Genetic and/or epigenetic alterations of mitochondrial
functions cause a large variety of degenerative diseases,
aging, and cancer (Wallace, 1999; Brandon et al., 2006;
Singh, 2006). An expanding number of autosomal diseases
were associated with mitochondrial DNA depletion and
multiple deletions. These disorders are due to defects of
intergenomic communication, in fact mutations of nuclear
genes for mitochondrial proteins possibly disrupt the nor-
mal cross-talk that regulates the number of mtDNA copies
and expression of mitochondrial genes, as suggested by
Hirano and Vu (2000).

An association between mitochondrial dysfunction and
cancer was made by Otto Warburg, (1930) and metabolic
aberrations associated with mitochondrial bioenergetic
functions in cancer cells were observed (Modica-Napolit-
ano et al., 2007). The relationship between mitochondrial
disorders and mutations was documented for several doz-
ens of nuclear genes encoding proteins directly or indi-
rectly involved in the biogenesis of the respiratory chain
complexes (Rötig and Munnich, 2003). Most human car-
cinomas express reduced amounts of the catalytic subunit
of H+-ATP synthase (Santamarı́a et al., 2006). In con-
trast, the expression of nuclear encoded cytochrome c

oxidase subunits increases in human prostate carcinoma
(Herrmann et al., 2003). Indeed, mutant mtDNA in
tumor cells is more abundant than mutated nuclear mar-
ker (Fliss et al., 2000), so that mtDNA mutations were
used as clonal markers in hepatocellular carcinoma
(Nomoto et al., 2002) and breast cancer (Parrella et al.,
2001). Interestingly, mitochondrial disfunction resulting
from changes in mtDNA invokes mitochondria-to-
nucleus retrograde responses in human cells (Modica-
Napolitano et al., 2007). Kulawiec and colleagues, using
a proteomic analysis, compared a cell line missing mito-
chondrial genome and a cybrid cell line in which mtDNA
had been restored. They demonstrated changes in the
expression of several proteins, and suggested that retro-
grade responsive genes may potentially function as tumor
suppressor or oncogenes (Kulawiec et al., 2006). These
studies show the correlation between functional defects
of mitochondria and tumorigenesis, and suggest that ret-
rograde signaling may be an important factor in restoring
the non-tumorigenic phenotype (Modica-Napolitano
et al., 2007).
6. Concluding remarks

Mitochondrial function must rely on an orchestrated
cross-talk between nuclear and mitochondrial genes and,
although the genomes are physically distinct, they should
be considered interdependent from the functional point
of view. In this review, we discuss the communication
between nucleus and mitochondria and the mechanisms
that could regulate this complex interplay. From the
above-mentioned works, it appears clear that nucleus has
a dominant role in the regulation of mitochondrial activity.
Nuclear-coded transcriptional factors control the activity
of mitochondrial genome, coordinating the expression of
both nuclear and mitochondrial genes for mitochondrial
proteins. In addition, nucleus activity makes use of pro-
teins that regulate translation, stability, and localization
of the mRNAs, both of nuclear and mitochondrial origin,
modulating developmental and/or tissue-specific expres-
sion. RBPs’ activity could represent a mechanism involved
in the nucleus to mitochondrion communication. Other
nucleus-encoded proteins participate in the control of the
import of mitochondrial proteins and ensure the correct
assembly of OXPHOS complexes. The coordination
between transcriptional and post-transcriptional regulation
mechanisms might be due to ‘‘compensation’’ factors,
responsible for the regulation of respiratory enzymes syn-
thesis, according to the requirements of subunits assembly
in fully functioning complexes. Nonetheless, nuclear gene
expression can be influenced by signals coming from mito-
chondria, through retrograde communication, so that the
regulation of mitochondrial activity requires a bidirectional
flow of information.
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